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Multiconductor Transmission-Line Characterization:
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Abstract—This paper investigates a measurement method that
characterizes lossy printed multiconductor transmission lines,
its accuracy, the choice of measurement representations, and
some simple approximations. We illustrate the method with
measurements of a pair of lossy coupled asymmetric microstrip
lines.

Index Terms—Measurement, modal cross power, multiconduc-
tor transmission line.

I. INTRODUCTION

T HIS PAPER investigates the measurement method of [1],
which characterizes multiconductor transmission lines in

the modal and “power-normalized” conductor representations
of [2] and [3]. We present a comparison of the modal and
power-normalized representations, discuss measurement accu-
racy, and investigate approximations suitable for use in digital
simulators.

The measurement method is based on the electrical model
of Fig. 1 for a multiconductor transmission line under test.
This model embeds the lines in two reciprocal four-port
“error boxes” to account for transition parasitics between
the measurement reference planes, which are located in the
access lines of Fig. 2, and the multiconductor transmission
line itself. The measurement procedure uses two-port data
and the weighted orthogonal distance regression algorithm of
[4] to best determine the parameters of the error boxes and
transmission line.

The procedure consists of three steps. The first step cali-
brates an overdetermined set of two-port measurement data
in the access lines. The second finds the low-frequency limit

of the line’s matrix of capacitances per unit length in
its power-normalized representation. This step makes use of
measurements of both sections of the multiconductor transmis-
sion line and of resistors embedded in it to estimate. This
estimate is based on the assumption that the resistors’ power-
normalized impedance matrices approach their dc impedance
matrices at low frequencies.

The third step of the procedure is based on the fact that
the matrix of transmission-line admittances per unit length
in the conductor representation is easily approximated from

over the entire frequency range. Fixing defines the
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Fig. 1. Full model of the measured lines. The model includes a multiconduc-
tor transmission line and two four-port error boxes to account for transition
parasitics. The two error boxes were electrically identical, except for their
connections, which are indicated by the circled terminal numbers marked in
the figure.

Fig. 2. Schematic representation of the measurement artifacts and procedure.
Coaxial cables connect the vector network analyzer (VNA) to the probes. The
probes contact the center conductor of the access lines directly. The inset
labeled “Connection detail” shows the contacts, via holes, andY junction
used to contact the access lines.

impedance normalization of the conductor representation and
allows all of the parameters of the electrical model to be
determined uniquely from measurements of multiconductor
transmission-line sections without recourse to the low-
frequency approximations of the second step. This approach
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not only determines all of the parameters describing the
transition parasitics modeled by the error boxes and the
parameters describing the transmission line in both its
modal and conductor representations, but also eliminates
the requirement of the approach presented in [5] that the
relationships between the modal and conductor voltages be
fixed by symmetry and that these relationships be known in
advance.

In this paper, we will describe the measurement method,
study its accuracy, and investigate an expression for estimating
parameters characterizing multiconductor transmission lines
suitable for efficient digital simulation. We will also use
measurements of a pair of lossy coupled asymmetric microstrip
lines to illustrate the properties of the modal and power-
normalized conductor representations.

II. TRANSMISSION-LINE MODES

The total transverse electric field and magnetic field
in a closed transmission line that is uniform inand

constructed of linear isotropic materials can be written as [6]

(1)

Here, and are the modal voltages and currents and
are functions only of , , and normalize and ,
and and are the transverse modal electric and magnetic
fields and are functions only of the transverse coordinates
and . The subscript indicates that the quantities are modal
and the sums over the modesspan all of the excited modes
in the line. The time–harmonic dependence , where
is the real angular frequency, has been suppressed. In open
guides, we must add a continuous spectrum of modes to this
discrete set [7], which we assume we can neglect here.

We restrict the normalizing voltages and currents
by setting , where

, so that the power carried in the forward direction
by the th forward and backward modes in the absence of
any other modes in the guide is given by ; this is
the conventional normalization and corresponds to the power
condition used in [2] and [8] and suggested by Brews [9]. The
characteristic impedance of theth mode is

; its magnitude is fixed by the choice
of or while its phase is fixed by .

The vectors of modal voltages and modal currents
satisfy the transmission-line equations

(2)

where the diagonal matrices of modal impedances and admit-
tances per unit length are and

is the diagonal matrix of modal propagation con-
stants , and [2].

When a finite number of the discrete modes are excited in
the line, the total complex power carried in the forward
direction is

(3)

where the superscriptindicates the Hermitian adjoint (conju-
gate transpose), the elements of the cross-power matrixare
defined by ,
and the integrals are performed over the entire transmission-
line cross section [2].

III. CONDUCTOR REPRESENTATION

Since every mode excited in a multiconductor transmission
line will impress a voltage across each of its conductors,
the total voltage between any given conductor pair will be a
linear combination of the modal voltages. Likewise, the total
current in any given conductor will be a linear combination
of the modal currents. References [2] and [3] refer to these
linear combinations of modal voltages and currents as the
“conductor” voltages and currents.

The vectors of conductor voltages and currents of [2]
and [3] are defined by and , where
the subscript indicates a conductor quantity, the matrices

and are unitless, and, except in some special cases,
are frequency dependent. The vectorsand are power
normalized in [2] and [3] so that : this requires that

and satisfy . The vectors and satisfy
the transmission-line equations [2]

(4)

where the matrices of conductor impedances and admittances
per unit length are defined by

and

IV. M EASUREMENT METHOD

Fig. 2 illustrates the data acquisition and analysis procedure,
which begin with a two-port multiline thru-reflect-line (TRL)
calibration [10] with reference impedance correction [11] in
microstrip access lines. We used on-wafer probes to connect
to these access lines, employing conventional via holes through
the substrate to form the electrical connection to the ground
plane on the back of the substrate. To simplify the connections,
we placed a “Y” junction in the access line and additional
contacts and vias, as illustrated in the inset of Fig. 2, labeled
“Connection detail.” These additional contacts and vias allow
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TABLE I
MEASURED AND CALCULATED ELEMENTS OFCCCc0 AND CCCc2

the access lines to be contacted from either of two orthogonal
directions by the probes.

This initial TRL calibration corrects for errors in the two-
port data due to imperfections in the analyzer. The calibration
also removes the effects of the wafer probes, via-hole tran-
sitions, Y junctions, and access lines used to connect the
analyzer to the multiconductor lines; this eliminates the need
for the models required in [5] to account for the contacts,
via-hole transitions, and access lines. However this calibration
does not take into account coupling between the access lines,
the discontinuity where they connect to the multiconductor
transmission line, or higher order mode excitation at that
discontinuity: these effects will be accounted for by the four-
port error boxes (see Fig. 1).

The initial reference plane of the TRL calibration is in
the middle of the shortest line, marked A in the upper box
of Fig. 2. Measurements at the reference plane marked B
determine the impedances of a set of imperfect loads, each
of which consisted of a section of the access line, Y junction,
probe, and coaxial load.

During the collection of the two-port measurement data,
the on-wafer probes contacted the access lines at two of
the four transmission-line ports; the imperfect, but already
characterized, loads are used to terminate the remaining access
lines. This is illustrated in the middle and lower boxes of
Fig. 2, which schematically show how the analyzer and loads
were connected to the lines and resistors during the two
optimization steps. In both optimizations, we use all four of
the transmission-line measurement configurations, shown in
the lower part of Fig. 2.

The first optimization of the procedure is illustrated in the
middle box of Fig. 2. We estimate values of and using
orthogonal distance regression [4]; the optimized values are
those that minimize the sum of the squared differences between
the model of Fig. 1 and the measured two-port impedance
matrices of resistors and sections of the lines terminated
with characterized loads. The reference plane for the two-
port measurement data is at C, and the algorithm uses the
assumption that the impedance matrices of the embedded
resistors are equal to their measured dc impedance matrices.
Then is determined from a low-frequency extrapolation of

: this works because the approximation for the impedance
matrices of the embedded resistors is good at low frequencies.

The second optimization is illustrated in the lower box of
Fig. 2. Here, we set to and resolved
for . We determined the elements of listed in Table I
with the full-wave method of [12]. These values are small
compared to the elements of , and had little effect on

the final measured results. Setting in this way fixes the
impedance normalization of the conductor representation.

Setting also eliminates the requirement for the extra
resistor measurements and associated approximations needed
to solve uniquely for the parameters describing the error boxes
in the first optimization [1]. These error boxes account for
the coupling between the access lines, the discontinuity at
the junction to the multiconductor transmission line, and for
any higher order mode excitation at that junction. Explicitly
incorporating them in the measurement model insures that
these parasitic elements do not introduce systematic error into
the transmission-line parameters.

To fit the two-port measurement data, we needed to de-
termine the impedance matrix of sections of the multi-
conductor transmission line as a function of and . To
determine , we used the fact that and diagonalize

and , which implies
that the eigenvalues of (or ) determine , the
columns of are proportional to the eigenvectors of
and the columns of are proportional to the eigenvectors of

[2]. The lines we studied support two dominant modes,
which are commonly called the and modes, and which
correspond to the even and odd modes in the symmetric case.
We determined the proportionality constants needed to fix the
columns of from the conditions and

. These conditions define the-mode voltage
equal to that between the second microstrip conductor and the
ground plane and the-mode voltage equal to the difference of
the voltages between the first and second microstrip conductors
[13]. We determine the proportionality constants needed to fix
the columns of from the relation , whose
diagonal elements are all equal to one.

Once , , and were known, we determined the
modal parameters describing the line from ,

, and . We then determined
the four-port impedance conductor matrix of the sections
of the multimode transmission line from

(5)

where is its length, and the matrices
and are

diagonal. From , we calculated the two-port impedance
matrices predicted by the model using Kirchhoff’s laws and
compared them to the two-port measurement data.

We also determined from . Thus, although
the method optimizes the conductor parametersand
until the predictions of the model agree with the two-port
measurement data, it determines the modal parameters at the
same time and, thus, provides a complete description of the
multiconductor transmission line in both representations.

V. MODAL AND CONDUCTOR IMPEDANCE PARAMETERS

We applied the measurement procedure to two asymmetric
coupled microstrip lines separated by a gap of 45m printed
on a 254- m-thick alumina substrate. The first microstrip
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Fig. 3. Magnitude ofXXX�c and ratios of the voltages impressed by thec
and� modes between the 54-�m-wide microstrip conductor and the ground
(vc1) and the 254-�m-wide microstrip conductor and the ground(vc2). The
measurements were performed using the method of [1] and the calculations
performed with the full-wave method of [12]. The arrows indicate the
appropriate scales for the plotted data.

conductor had a width of 54m and the second a width of
254 m. The lines had lengths of 1, 6, 11, 16, and 21 mm,
and their conductor metallization had a measured thickness of
1.8 m and measured dc conductivity of m .

Fig. 3 compares measurements of the off-diagonal elements
of to full-wave calculations and shows fair agreement.
It also shows that the ratios of the voltages impressed by
the and modes between the two conductors and their
grounds are frequency dependent. This is a reflection of the
complex changes in the modal field configurations near the
peak in the off-diagonal elements of near 300 MHz. The
physical phenomena responsible for this complex behavior are
investigated by [14].

Fig. 3 not only illustrates the ability of the method to deter-
mine modal parameters, but also clearly shows two important
drawbacks of the modal representation for circuit design: the
modal field patterns are frequency dependent and, sinceis
not diagonal, the complex power is not equal to .

We can illustrate these drawbacks in a more concrete way
by examining the impedance matrices of the simple resistive
circuit illustrated in the lower right corner of Fig. 4. The
two small planar resistors were connected between the two
conductors of the line and the ground plane on the back of
the substrate with via-holes and had measured dc resistances
of 49 and 93 . We used the model of Fig. 1 and the
procedure described in [15] to determine the circuit’s modal
and conductor impedance matrices.

The dashed lines in Fig. 4 correspond to the real parts of
the measured elements of the modal impedance matrixof
this small lumped circuit: they are highly frequency dependent.
This illustrates another difficulty of using modal impedance
matrices for circuit design: their elements do not correspond
to those anticipated from simple physical models such as
those of [16], despite the small size and lumped nature of the
circuit. Circuit design in this modal representation is difficult
because the modal impedance matrices depend not only on
the circuit connected to the line, but also on the complex
frequency-dependent modal behavior illustrated in Fig. 3.

Fig. 4. Real part of the elements of the modal impedance matrixZZZmr and
the conductor impedance matrixZZZcr for two small resistors. The connections
of the resistors are sketched in the lower right of the figure; their measured dc
resistances wereR1 = 49 
 andR2 = 93 
 and are indicated with arrows
on the left-hand side of the figure. (From [15].)

The solid lines of Fig. 4 correspond to the real parts of the
elements of the conductor impedance matrix of the circuit.
The figure shows that the real parts of the elements ofare
nearly constant with frequency and correspond closely to the
measured dc resistances of the two small resistors, as we would
expect from simple physical considerations [16]; the imaginary
parts of the elements of start at zero and increase linearly
with frequency, and also correspond to behavior we would
anticipate from physical considerations. Sinceand are
power normalized, the conductor impedance matrices can be
used directly in conventional circuit simulators to predict
circuit response and power flow [2].

VI. A CCURACY

We estimated and from two-port measurement data
using ODRPACK [17], an implementation of the weighted
orthogonal distance regression algorithm of [4]. Although
this software makes finding least-squares estimates relatively
straightforward, two important issues had to be addressed
before we were able to estimate and and their errors.
Firstly, there was a problem of numerical instability. Secondly,
because of the way the data are measured, the number of
degrees of freedom in the optimization results had to be
determined.

Numerical instability can arise for a number of reasons:
here it was due to both colinearity and very large values
of the elements of the impedance matrix describing the
transitions between the single-mode microstrip access lines
and the multiconductor transmission lines we were testing.
Both the colinearity and large element values were due to
the electrical characteristics of the transitions, which we had
designed to minimize their electrical effects; as a result, the
error boxes of Fig. 1 were nearly transparent to electrical
signals and values of corresponding to shunt electrical
elements were large. In addition, small parasitics could be
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added to either the left- or right-hand sides of the error box
with nearly indistinguishable results.

We eliminated infinite elements of by multiplying all of
the two-port scattering-parameter measurement data by a con-
stant factor of 0.5, which was equivalent to attenuating these
measurements by 6 dB. This forces the error boxes to look
like electrical 6-dB attenuators rather than thru connections.
It also verified the ability of the algorithm and error boxes to
compensate for large transition parasitics.

The numerical instability related to the indistinguishability
of adding parasitics at either the left- or right-hand sides
of the nearly perfect error boxes could be handled in any
one of several ways, all of which produce nearly identical
solutions for and . For the results reported here, we
forced and during the optimization.
The estimates of the effects of the series parasitic elements in
the signal paths are thus evenly distributed between the left-
and right-hand sides of the error boxes.

We examined random and systematic errors separately.
We usedODRPACK to characterize the random error from an
analysis of the redundant two-port data it used to estimate
model parameters. This analysis allowsODRPACK to determine
confidence intervals for the results based on the assumption
that the sources of the random error are normally and indepen-
dently distributed [17]. However, Davidson and MacKinnon
[18] show that nonlinear least-squares methods like those
implemented inODRPACK produce minimum variance and
consistent asymptotically linear estimators even when the
errors are not normally distributed.

We used the calibration comparison method [19] to approx-
imate the number of degrees of freedom in the estimated
variance of the random errors. The analysis indicated that
those errors contained a large component due to drift in the
electrical parameters describing the instrument, which led us to
believe that they were highly correlated. Consistent with this
analysis, we treated the data from each two-port measurement
as having only two independent sources of random error. This
assumption results in a reduction in the number of degrees
of freedom and a slight increase in the estimated confidence
intervals for the optimized parameters over what would be
calculated if the data from each measured scattering parameter
was considered to have an independent source of error.

Figs. 5 and 6 plot the measured values of and and
their asymptotic 95% confidence intervals as determined by
ODRPACK. The 95% intervals plotted in the figures reflect the
confidence we have in these parameters under the assumption
that the error sources in the experiment are entirely random.

We looked for systematic errors in our measurements of
and by comparing their values to calculations performed
with the full-wave method of [12], the most accurate numerical
electromagnetic-field simulator of which we are aware. This
simulator accounts not only for fringing fields and other high-
frequency effects, but also for field penetration into the metals.
These calculations are marked with crosses in Figs. 5 and 6.

A comparison of the full-wave calculations to the 95%
intervals determined byODRPACK detects the presence of
additional systematic errors. Fig. 5 shows that the elements
of the resistance matrix from the full-wave calculations

Fig. 5. Measured values ofRRRc and their 95% confidence intervals compared
to calculations from the full- wave method of [12] and the estimates^ZZZc.

Fig. 6. Measured values ofLLLc and their 95% confidence intervals compared
to calculations from the full-wave method of [12] and the estimates^ZZZc.

fall well within the 95% confidence intervals over the entire
frequency range. This indicates that the random error in these
resistance measurements is far larger than any systematic
errors in the experiment. This is not surprising given the large
sizes of the estimated confidence intervals for the elements of

at high frequency, where the real part of
is small compared to its imaginary part.

However, Fig. 6 shows differences of up to 5% between the
measured and calculated elements of the inductance matrix

. Since some of these calculated inductances fall outside
of the 95% confidence intervals for the estimated parameters,
we conclude that the discrepancies cannot be due entirely
to random measurement error. This implies the existence of
small, but statistically significant, systematic errors in either
the measurements or the calculations.

We were unable to determine a source of the systematic error
in the measurements of . However, for the purposes of the
full-wave calculations, we assumed that the alumina substrate
had a dielectric constant of ten and was lossless. Furthermore,
we used additional material and geometrical parameters in
these calculations that we could not determine to better than
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5%. These values are a possible source of error in the full-wave
calculations, and may account for the systematic difference
between the measurements and calculations.

VII. D IGITAL SIMULATION

We will investigate an approximate form of the measured
frequency-dependent values of and that can greatly
reduce the computational burden of digital simulation tools.
The assumptions employed in this section play no role in either
the measurement procedure or analysis.

References [20] and [21] show that the computational
burden associated with accounting for a frequency-dependent

in finite-difference time-domain digital simulations can be
greatly reduced when can be approximated as

(6)

where the matrices , , and are real and frequency
independent. is well suited for use in these tools because it
has a closed-form Laplace transform whose convolutions can
be calculated efficiently [20] with Prony’s method [22]. is
also causal, which makes it suitable for use in methods such
as [23], which are based on Green s functions.

If is to correspond to at its dc limit, then the matrix
must be set to , the line’s dc resistance matrix; if

is to correspond to at its high-frequency limit, then
must be set to , the line’s matrix of external inductances.
Equation (6) can now be expressed as

(7)

where can be measured directly and can be determined
from quasi-static methods that ignore losses and penetration
of fields into the metals [24].

Figs. 5 and 6 show calculated by setting the real part
of the diagonal elements of (7) equal to the real part of
the diagonal elements of calculated with the full-wave
method of [12] at 10 GHz; i.e., we matched the two conductor
resistances predicted (7) to their calculated values at 10 GHz.
The figures show that this approximates the measured and
numerically calculated values of and well enough to be
useful in many digital simulations, even though it somewhat
underestimates the elements of at high frequencies.

VIII. C ONCLUSION

We presented a method for the measurement and character-
ization of lossy asymmetric printed multiconductor transmis-
sion lines, which are important components in electronic pack-
ages and interconnections. The method is based on rigorous
relations between the transmission line’s conductor represen-
tation, its modal representation, and its impedance matrix; this
allows it to be used to characterize lossy asymmetric coupled
lines in which the modal cross powers are significant and the
relationships between the modal and conductor voltages and
currents are complex and frequency dependent.

We used the measurement method to convincingly demon-
strate the advantages of the power-normalized representation
of [2] and [3] over modal representations. However, the

power-normalized representation investigated here and the
reciprocity-based representation of [25] are nearly identical in
these asymmetric microstrip lines [2]; thus, our results indicate
that either one of these representations could be used for circuit
design in these lines.

We also studied measurement accuracy and examined the
asymptotic confidence intervals of the estimated parameters.
The optimization procedure solved for all of the parameters of
the model of Fig. 1 at each frequency: no information about the
behavior of the model at adjacent frequencies was considered.
This is the typical approach for network analyzer calibration,
where the electrical parameters of the error boxes describing
the analyzer vary rapidly and unpredictably with frequency.

However, the error boxes we use describe only the coupling
between the access lines and the electrical behavior of the
small lumped transitions between the access lines and the
coupled line: the initial TRL calibrations remove the effects
of the analyzer, cables, probes, contacts, and access lines.
As a result, the electrical parameters describing these error
boxes vary smoothly with frequency. It should be possible to
take advantage of the lumped behavior of these error boxes to
improve the estimated values of and .

We also illustrated how to develop expressions for estimat-
ing conductor resistances and inductances that may be useful in
digital simulations. These expressions are useful because their
parameters can be determined from a full-wave calculation at
a single frequency.
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